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abstract

PURPOSE The wide heterogeneity in multiple myeloma (MM) outcome is driven mainly by cytogenetic ab-
normalities. The current definition of high-risk profile is restrictive and oversimplified. To adapt MM treatment to
risk, we need to better define a cytogenetic risk classification. To address this issue, we simultaneously ex-
amined the prognostic impact of del(17p); t(4;14); del(1p32); 1q21 gain; and trisomies 3, 5, and 21 in a cohort
of newly diagnosed patients with MM.

METHODS Data were obtained from 1,635 patients enrolled in four trials implemented by the Intergroupe
Francophone du Myélome. The oldest collection of data were used for model development and internal val-
idation. For external validation, one of the two independent data sets was used to assess the performance of the
model in patients treated with more current regimens. Six cytogenetic abnormalities were identified as clinically
relevant, and a prognostic index (PI) that was based on the parameter estimates of the multivariable Cox model
was computed for all patients.

RESULTS In all data sets, a higher PI was consistently associated with a poor survival outcome. Dependent on the
validation cohorts used, hazard ratios for patients in the high-risk category for death were between six and
15 times higher than those of patients in the low-risk category. Among patients with t(4;14) or del(17p), we
observed a worse survival in those classified in the high-risk category than in those in the intermediate-risk
category. The PI showed good performance for discriminating between patients who died and those who
survived (Harrell’s concordance index greater than 70%).

CONCLUSION The cytogenetic PI improves the classification of newly diagnosed patients with MM in the high-risk
group compared with current classifications. These findings may facilitate the development of risk-adapted
treatment strategies.

J Clin Oncol 37:1657-1665. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Multiple myeloma (MM) is characterized by a wide
heterogeneity in outcome, with patients staying alive
more than 10 years after diagnosis and others dying in
a few months. Among all prognostic factors described
in MM, chromosomal abnormalities present in tumor
plasma cells and detected by interphase fluorescence
in situ hybridization (FISH) or by single nucleotide
polymorphism (SNP) array have a substantial impact.1

Indeed, the International Myeloma Working Group has
recommended the incorporation of these factors along
with serum lactate dehydrogenase in the revised In-
ternational Staging System (ISS) for Multiple Myeloma
(R-ISS).2 Among the high-risk chromosomal changes
described in MM, those established and on which

there is general consensus are del(17p) and t(4;14).
These abnormalities negatively affect both progression-
free survival and overall survival and, respectively, ap-
proximately 8% and 15% of patients with newly
diagnosed MM (NDMM).3-7 A consensus also seems
to exist on the protective role of hyperdiploidy.8-11 Among
all trisomies involved in hyperdiploid MM, three have
been shown to modulate overall survival of these high-
risk patients. First, patients with trisomy of chromosome
3 or 5 have a significantly improved overall survival
compared with those who lack these trisomies, whereas
patients with trisomy 21 have worse outcomes than
those who lack this trisomy.12 Second, a more recently
described high-risk chromosomal change is the
del(1p32), which affects 8% of patients with NDMM,13

the presence of which dramatically worsens the poor
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outcome value of t(4;14).14 Finally, although it displays
a lower prognostic impact, the frequent gain of 1q21 is also
significantly associated with reduced survival and affects
approximately one third of patients with NDMM.15 All com-
binations among these abnormalities are theoretically pos-
sible, even if some of them are more frequent, such as the
association among trisomies.16 Nevertheless, they rarely have
been analyzed together.17-19 Today, the definition of cyto-
genetic risk profile in patients with MM, on the basis of two or
three unfavorable prognostic markers, seems restrictive and
oversimplified. We aimed to adapt MM treatment to risk by
defining a cytogenetic risk classification that could be used
systematically (hence routinely). We simultaneously exam-
ined the prognostic impact of del(17p); t(4;14); del(1p32);
1q21 gain; and trisomies 3, 5, and 21 in a large cohort of
patients with NDMM. Our main objective was to develop and
validate a prognostic model that is based on these seven
cytogenetic abnormalities and to evaluate how successful this
model is when used in a more recent series of patients
with MM.

METHODS

Patients and Methods

Cytogenetics results and clinical data were obtained
from patients enrolled in four different randomized clinical
trials implemented by the Intergroupe Francophone du
Myélome (IFM): IFM 99-02 (ClinicalTrials.gov identifier:
NCT00222053), IFM 99-06 (ClinicalTrials.gov identifier:
NCT00367185), IFM 2005-01 (ClinicalTrials.gov identifier:
NCT00200681), and IFM 2009 (ClinicalTrials.gov identifier:
NCT01191060). Complete details of these trials have been
reported.20-23 The oldest collection of IFM cytogenetic data
was from 960 patients, and these data were used as the
primary data set for model development and internal vali-
dation. This data set was chosen not only because it already
contained the common cytogenetic aberrations and trisomy
abnormalities described in patients with MM (ie,1p12, 1p22,
1p32, 1q, 3q, 5p, 6p, 6q, 8p, 12p, 14q, 16q, 20p, 20q, 22q
plus trisomies) but also because a long-term follow-up period
over several years was available for all patients. Seventy-four
percent of the patients received an intensive approach with
either vincristine, doxorubicin, and dexamethasone or bor-
tezomib and dexamethasone (VD) followed by high-dose
melphalan (HDM) and autologous stem-cell transplantation
(ASCT), whereas 26% received a nonintensive treatment
because they were older than age 65 years.

After model development and internal validation, two other
data sets were formed to include ISS disease stage, which
was unavailable in the primary data set, and to test whether
the prognostic model applies in patients treated with more
current and effective treatment regimens. The first data set
included 359 patients enrolled during the same period as the
training set, and the second was derived from the IFM 2009
study and included 322 patients. For these two external
validation cohorts, only conventional high-risk cytogenetic

factors were available, and new cytogenetic analyses were
performed to derive the prognostic index (PI). Hence, pa-
tients were selected if an excess of bonemarrow plasma cells
were still stored in the IFM myeloma biobank (DC-201-
1654). None of these patients were included in the primary
data set. Similar to the primary data set, the first external
validation cohort comprised patients who received induction
therapy with either vincristine, doxorubicin, and dexa-
methasone (n = 152) or VD (n = 148) followed by HDM and
ASCT and 59 patients (16%) who received a nonintensive
treatment because they were older than age 65 years. The
second external validation cohort included 167 patients
(52%) who received a lenalidomide and VD (RVD) induction
followed by an RVD consolidation and 155 patients (48%)
who received an RVD induction followed by HDM and ASCT
and an RVD consolidation. All patients gave written informed
consent before entering the source trials.

Bone marrow samples were obtained at diagnosis before
treatment initiation and were shipped overnight to a central
laboratory. Upon receipt, plasma cells were isolated from
bone marrow using CD138+ magnetic-activated cell sorting
(Miltenyi Biotec, Paris, France). Postsorting purity was
checked by cytologic analysis of a spin from positive
fraction. Only samples with 70% or more of plasma cells
after sorting were kept, per protocol, for the cytogenetic
analysis. Plasma cells from all samples were analyzed by
FISH for t(4;14)(p16;q32) determination using specific
probes from Abbott Molecular (Paris, France) and by SNP
array (Affymetrix, Santa Clara, CA) using the Cytoscan HD
Array Kit (Affymetrix) for the detection of the six other
anomalies. In cases where del(17p) was detected, an
additional FISH analysis was performed to evaluate the
percent of involved plasma cells using specific probe TP53/
CEP17 (Cytocell AmpliTech, Compiègne, France). Only
del(17p) present in at least 60% of plasma cells were taken
into account.24 This stringent definition has been confirmed
by a large meta-analysis25 in patients who displayed the
anomaly in less than 60% of the plasma cells presenting
a non–high-risk profile. For the second external validation
cohort, SNP array analyses were performed for only 32% of
patients because of a lack of DNA. For the other 68% of
patients, we performed FISH experiments using probes that
targeted chromosomes 1p32, 1q21, 5p23, 17p13, and
21q21. These probes were provided by Abbott Molecular.
The choice of the 5p23 probe was based on the analysis of
more than 1,500 SNP arrays, which showed that the
minimal gained region was 5p. All cytogenetic assessments
were performed by biologists blinded to clinical data.

Statistical Analysis

MM-specific survival was defined as the time from di-
agnosis to death. Patients whose cause of death was
definitely unrelated to MM were censored at the time of
death. Death events excluded from analysis were a result of
other malignancies, lethal toxicities from treatments under
investigation, and violence (eg, suicide, road traffic
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TABLE 1. Patient Characteristics and Cytogenetic Abnormalities in the Four Data Sets
Data Set, No. (%)

Variable Training Internal Validation External Validation 1 External Validation 2

No. of patients 720 234 359 322

Sex*

Male 407 (56.6) 131 (56.0) 205 (57.9) 192 (59.6)

Female 312 (43.4) 103 (44.0) 149 (42.1) 130 (40.4)

Age at diagnosis, years

Mean (SD) 59.6 (9.96) 62.4 (9.92) 56.6 (7.24) 56.6 (7.32)

Median (Q1-Q3) 59.6 (53.6-65.8) 62.4 (56.1-69.3) 58.0 (52.0-62.0) 59.0 (52.0-62.0)

Minimum-maximum 33.3-87.5 35.9-86.7 34.0-71.0 28.0-65.0

Treatment of multiple myeloma

No HDM 161 (22.4) 88 (37.6) 59 (16.4) —

VAD + HDM 189 (26.3) 1 (0.4) 152 (42.3) —

VD + HDM 370 (51.4) 145 (62.0) 148 (41.2) —

RVD alone — — — 167 (51.9)

RVD + HDM — — — 155 (48.1)

ISS disease stage

I — — 82 (30.6) 107 (33.2)

II — — 92 (34.3) 153 (47.5)

III — — 94 (35.1) 62 (19.3)

No. of patients 268 322

No. missing — — 91 0

t(4;14)†

No 521 (80.5) 194 (82.9) 312 (86.9) 290 (90.1)

Yes 126 (19.5) 40 (17.1) 47 (13.1) 32 (9.9)

Del(17p)

No 620 (86.1) 211 (90.2) 312 (86.9) 297 (92.2)

Yes 100 (13.9) 23 (9.8) 47 (13.1) 25 (7.8)

Cytogenetic risk profile

t(4;14) and del(17p) negative 453 (70.0) 178 (76.1) 276 (76.9) 269 (83.5)

t(4;14) or del(17p) positive 194 (30.0) 56 (23.9) 83 (23.1) 53 (16.5)

Trisomy 5

No 452 (62.8) 136 (58.1) 226 (63.0) 183 (56.8)

Yes 268 (37.2) 98 (41.9) 133 (37.0) 139 (43.2)

Trisomy 21

No 550 (76.4) 181 (77.4) 264 (73.5) 240 (74.5)

Yes 170 (23.6) 53 (22.6) 95 (26.5) 82 (25.5)

Chromosome 1q gain

No 388 (60.0) 148 (63.2) 227 (63.2) 218 (67.7)

Yes 259 (40.0) 86 (36.8) 132 (36.8) 104 (32.3)

Del(1p32)

No 631 (87.6) 205 (87.6) 330 (91.9) 296 (91.9)

Yes 89 (12.4) 29 (12.4) 29 (8.1) 26 (8.1)

(continued on following page)
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accident). Alive patients were censored at the last date
known alive. The primary data set, which comprised 960
patients, was split into two parts (3:1) according to bone
marrow sampling date to create two sets of patients used
for the development (n = 720) and the internal validation
(n = 240) of the model. Because the split was in time, the
internal validation set can be viewed as a temporal validation.
In the training set, 73 of the 720 patients had a missing
value for t(4;14), and multiple imputations that were based
on 30 imputed data sets were applied to replace missing
values by imputed values from a logit model. In the internal
validation set, six patients had missing values for trisomy 21
or t(4;14), but no imputation was performed because
model development was solely on the basis of data from the
training set. A multivariable Cox proportional hazards re-
gression model stratified on treatment was used to identify
cytogenetic abnormalities [del(17p), t(4;14), del(1p32),
and 1q21 gain and trisomies 3, 5, and 21] predictive of
survival (Appendix Table A1, online only). All first-order
interactions between abnormalities were tested, and none
were significant. The proportionality assumption was
checked with Cox-Snell residuals and log-log plots. There
was evidence of a time-varying effect associated with the
del(17p) abnormality, which was shown to diminish pro-
gressively with time. [The average relative hazard for

patients with del(17p) during the first 5 years after diagnosis
was reduced from 3.2 to 1.5 after 5 years.]

To avoid complex modeling of the cytogenetic PI and to
facilitate its application in practice and research settings,
the validation of the final model was thereafter limited to the
prognosis of death within the first 5 years. A PI that was
based on the parameter estimates of the multivariable Cox
model was computed for all patients. To check the validity
of the PI, measures of discrimination and calibration were
performed in the validation cohorts where follow-up was
censored at 5 years. Discrimination was assessed using
Kaplan-Meier survival curves for the cytogenetic risk groups
and by estimating hazard ratios along with their 95% CIs as
well as using Harrell’s concordance index (C-index). The
C-index estimates the proportion of all pairs of patients in
whom prediction and outcome are concordant and takes
values from 0.5 (no discrimination) to 1.0 (perfect dis-
crimination). The model was recalibrated to account for
different baseline hazard functions in the validation data
sets, and calibration was checked by performing Cox
proportional hazards regression modeling in the validation
data sets with the PI as a single covariate. Calibration was
deemed valid if the estimate parameter was not statistically
different from 1. Calibration also was checked by plotting
the observed survival probability versus the expected

TABLE 1. Patient Characteristics and Cytogenetic Abnormalities in the Four Data Sets (continued)
Data Set, No. (%)

Variable Training Internal Validation External Validation 1 External Validation 2

No. of cytogenetic abnormalities

Median (Q1-Q3) 2.0 (1.0-3.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0)

Minimum-maximum 0.0-6.0 0.0-4.0 0.0-6.0 0.0-4.0

Survival information

No. of death events 405 94 202 61

Median survival, years 5.9 7.0 5.8 NR

Abbreviations: HDM, high-dose melphalan; ISS, International Staging System; NR, not reached; Q, quartile; RVD, lenalidomide, bortezomib,
and dexamethasone; SD, standard deviation; VAD, vincristine, doxorubicin, and dexamethasone; VD, bortezomib and dexamethasone.

*Sex was missing for one patient in the training set and for five patients in the external validation data set 1.
†t(4;14) was missing for 73 patients in the training set.

TABLE 2. Multivariable Cox Proportional Hazard Regression Models of Myeloma-Specific Survival Stratified by Treatment in the Training Set
Initial Prognostic Model Final Prognostic Model

Cytogenetic Abnormality b (95% CI) HR (95% CI) P b (95% CI) HR (95% CI) P

t(4;14) 0.42 (0.16 to 0.69) 1.53 (1.17 to 1.99) .002 0.40 (0.15 to 0.67) 1.50 (1.16 to 1.95) .002

Del(17p) 1.03 (0.78 to 1.28) 2.79 (2.218 to 3.59) , .001 1.17 (0.89 to 1.44) 3.21 (2.44 to 4.22) , .001

Trisomy 3 20.17 (20.41 to 0.08) 0.85 (0.67 to 1.08) .177 — — —

Trisomy 5 20.28 (-0.54 to 20.01) 0.76 (0.58 to 0.99) .042 20.35 (20.59 to 20.11) 0.71 (0.56 to 0.90) .005

Trisomy 21 0.36 (0.11 to 0.62) 1.44 (1.11 to 1.85) .006 0.34 (0.09 to 0.59) 1.41 (1.09 to 1.81) .008

Chromosome 1q gain 0.49 (0.29 to 0.69) 1.63 (1.33 to 2.00) , .001 0.50 (0.30 to 0.70) 1.64 (1.34 to 2.01) , .001

Del(1p32) 0.79 (0.53 to 1.05) 2.20 (1.70 to 2.86) , .001 0.80 (0.54 to 1.05) 2.21 (1.71 to 2.87) , .001

Abbreviation: HR, hazard ratio.
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survival probability at 5 years for different values of the PI.
Tests were two-sided, and P , .05 was considered sig-
nificant. Statistical analyses were performed using SAS 9.4
(SAS Institute, Cary, NC) and R version 3.0.2 (R Foundation
for Statistical Computing, Vienna, Austria) software.

RESULTS

Altogether, 1,635 patients with MM diagnosed between
2000 and 2012 were analyzed. Patient characteristics,
treatment, and cytogenetic abnormalities are listed in
Table 1. The adverse cytogenetic lesions were slightly over-
represented in the training set. The median number of
cytogenetic abnormalities was two per patient (interquartile
range, 1-3) in the training set and one (interquartile range,
0-2) in the other data sets. In the training and internal
validation sets, no cytogenetic abnormality was found in
20% of patients, whereas in the external validation data
sets, there were 25% without any cytogenetic abnormality.
The complexity of the associations between cytogenetic

abnormalities is shown in Appendix Figure A1 (online only).
The most frequent combination was the one between tri-
somies 5 and 21 followed by 1q gain among patients with
t(4;14) and del(1p32). The rarest combination was the one
between trisomy 5 and t(4;14).

Because of a difference in cohort construction, the median
follow-up time was 8.2, 6.0, 7.3, and 4.9 years in the
training, internal validation, and external validation sets 1
and 2, respectively. The estimated 5-year survival proba-
bilities were 58%, 62%, 54%, and 80%, respectively.

In the training set, six cytogenetic abnormalities were
identified as statistically relevant (Table 2), and the PI was
computed as follows: 0.43 t(4;14) + 1.23 del(17p)2 0.3
3 trisomy 5 + 0.3 3 trisomy 21 + 0.5 3 1q gain + 0.8 3
del(1p32). On the basis of the distribution of the PI and the
5-year survival probability, three categories of cytogenetic
risk were created. The low-risk group included all patients
with a PI less than or equal to 0 in whom 5-year survival
probability was greater than 75%, the high-risk group

P < .001
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FIG 1. Kaplan-Meier survival curves for myeloma-specific survival according to the three categories of the cytogenetic prognostic index. (A) Training set (n =
647). (B) Internal validation set (n = 234). (C) External validation data set 1 (n = 359). (D) External validation data set 2 (n = 322). Cox proportional hazards
regression models were stratified by treatment group. HR, hazard ratio.
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included all patients with a PI greater than 1 in whom 5-year
survival probability was less than 50%, and the
intermediate-risk group included patients with a PI of 0 to 1
in whom 5-year survival probability was between 50%
and 75%.

The PI ranged from 20.3 to 2.9 in all data sets. A score of
0 or less was observed only in patients with no adverse
cytogenetic abnormalities. In the training set, a score
greater than 1 was observed in 94% of patients with
del(17p), 29%with t(4;14), 51%with either del(17p) or t(4;
14), and 4% with neither of these two adverse cytogenetic
abnormalities as a result of the combination of del(1p32)
with either or both 1q gain and trisomy 21. The distribution

of the PIs and the repartition of risk categories according to
del(17p), t(4;14), and ISS disease stages were similar
across data sets (Appendix Figs A2 and A3, online only).

In all the data sets, a higher PI was consistently associated
with a poor survival outcome, and patients classified in in-
termediate- and high-risk cytogenetic groups experienced
shorter survival times than those in the low-risk group (Fig 1).
Dependent on the validation cohorts used, patients in the
high-risk cytogenetic category had hazard ratios for death
that were six to 15 times higher than those of patients in the
low-risk category. These results were confirmed in the two
external validation data sets after adjustment for ISS disease
stages, which indicates that the PI provided independent

TABLE 3. Cox Proportional Hazard Regression Models for Myeloma-Specific Survival at Up to 5 Years, Including ISS Disease Stage Adjusted or
Not on the PI

External Validation Data Set 1* External Validation Data Set 2†

Variable HR 95% CI P HR 95% CI P

ISS disease stage alone

II/I 2.07 1.26 to 3.38 .004 1.43 0.75 to 2.72 .280

III/I 2.75 1.70 to 4.44 , .001 2.10 1.02 to 4.30 .043

ISS disease stage and linear PI

II/I 1.74 1.06 to 2.85 .028 1.24 0.65 to 2.38 .517

III/I 1.96 1.21 to 3.16 .006 1.71 0.83 to 3.52 .145

Linear PI 5.27 3.92 to 7.08 , .001 2.72 1.93 to 3.84 , .001

ISS disease stage and PI in categories

II/I 1.61 0.98 to 2.65 .059 1.16 0.61 to 2.23 .647

III/I 1.80 1.11 to 2.93 .018 1.48 0.72 to 3.06 .289

Intermediate risk/low risk 4.59 2.82 to 7.49 , .001 4.96 2.48 to 9.92 , .001

High risk/low risk 13.32 7.71 to 23.00 , .001 7.57 3.45 to 16.59 , .001

Abbreviations: HR, hazard ratio; ISS, International Staging System; PI, prognostic index.
*No. of patients, 268; No. of events, 127.
†No. of patients, 322; No. of events, 57

TABLE 4. Cox Proportional Hazards RegressionModels for Myeloma-Specific Survival, Including the Cytogenetic PI With or Without Other Known
Prognostic Factors in the External Validation Data Sets

External Validation, C-Index (95% CI)

Prognostic Factor Set 1 (n = 268) Set 2 (n = 322) Set 2 (n = 310)*

Model 1: linear PI 0.77 (0.73 to 0.81) 0.73 (0.67 to 0.79) 0.72 (0.66 to 0.78)

Model 2: PI in three risk categories 0.75 (0.71 to 0.78) 0.71 (0.65 to 0.77) 0.70 (0.64 to 0.76)

Model 3: ISS disease stage 0.61 (0.56 to 0.65) 0.56 (0.49 to 0.64) 0.56 (0.49 to 0.63)

Model 4: linear PI plus ISS stage 0.78 (0.74 to 0.82) 0.72 (0.66 to 0.78) 0.72 (0.65 to 0.78)

Model 5: PI in three risk categories plus ISS stage 0.76 (0.72 to 0.80) 0.72 (0.65 to 0.78) 0.71 (0.64 to 0.77)

Model 6: adverse cytogenetic† 0.64 (0.60 to 0.67) 0.63 (0.57 to 0.69) 0.62 (0.56 to 0.69)

Model 7: ISS stage plus adverse cytogenetic 0.69 (0.65 to 0.73) 0.63 (0.57 to 0.72) 0.64 (0.56 to 0.72)

Model 8: R-ISS 0.55 (0.49 to 0.62)

Abbreviations: C-index, Harrell’s concordance index; ISS, International Staging System; PI, prognostic index, R-ISS, revised International
Staging System for Multiple Myeloma.

*Lactate dehydrogenase was missing for 12 patients in the external validation data set 2.
†Adverse cytogenetic risk is defined by del(17p) and/or t(4;14).
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information over that obtained from the ISS disease stage to
predict death events in the external validation data sets
(Table 3). By pooling all the validation data sets to show the
impact of the PI on patients who displayed or not t(4;14) and
del(17p) and according to ISS disease stages at diagnosis, we
always observed a worse survival in patients classified in the
high-risk category than in those classified in the intermediate-
risk category (Appendix Figs A4 to A6, online only).

The prognostic significance carried by the six cytogenetic
abnormalities demonstrated good performance for discrimi-
nating patients who died from those who survived in all the data
sets. The C-indices for the PI that defined the three risk cat-
egorieswere 0.71 (95%CI, 0.66 to 0.77), 0.76 (95%CI, 0.72 to
0.79), and0.71 (95%CI, 0.64 to 0.78) for the internal validation
set and external validation data sets 1 and 2, respectively.
Results were similar if the PI was used as a linear score.

Using external validation data sets 1 and 2, we also
assessed the discriminatory ability of ISS disease stage
alone or in combination with the PI and adverse cytogenetic
profile defined by either del(17p) or t(4;14). The better
discriminatory performance was observed for PI alone used
as a continuous index or in three risk categories. Any other
prognostic models that were based on ISS disease stage
and/or adverse cytogenetic profile systematically had
a lower ability to discriminate patients than a model that
included only the PI. Moreover, when ISS disease stage was
combined with the PI, the added prognostic value of ISS
was not clinically relevant (Table 4). Using external vali-
dation data set 2, we also were able to derive the R-ISS. The
C-index for the R-ISS disease stage alone was 0.55, which
means that the PI had a better prognostic accuracy. Ob-
served versus predicted probabilities, after model recali-
bration to account for differences in baseline survival
function, showed that calibration was correct in the vali-
dation data sets (Appendix Fig A7, online only).

Finally, we graphically assessed the prognostic value of the
PI relative to the study of time to progression, which is
defined as the time from diagnosis to disease progression or
death as a result of disease. In external validation data set 2,
the risk of progression or death related to MMwas higher for
patients classified in the high- and intermediate-risk cat-
egories than in those in the low-risk category (Fig 2).
Median time to progression was 3.6, 3.0, and 2.4 years in
the low-, intermediate-, and high-risk groups, respectively.

DISCUSSION

Specific chromosomal abnormalities play a major role in
MM prognostication, and combinations of cytogenetic le-
sions are more often the norm rather than the
exception.17,18,26,27 With improvement in patients’ survival,
those who display del(17p) or t(4;14) were observed to
have heterogeneous survival that depended on the co-
occurrence of other lesions.11,12,14,17,18 Hence, it became
obvious that the current definition of a high-risk cytogenetic
group defined by the presence of del(17p), t(4;14), or t(14;

16) was oversimplified and could lead to misclassification
of patient prognosis because it was only based on a few
cytogenetic abnormalities, which gave them the same
weight in assigning patients in a high-risk group. The cy-
togenetic PI presented here is innovative because it is
based on a weighted score, including several cytogenetic
abnormalities, and because it also includes a good prog-
nostic factor, the trisomy 5.12 According to our PI, patients
were identified at high risk if they displayed the only
del(17p) abnormality that induced a poor prognosis in itself
or various combinations of adverse cytogenetic lesions.
Consequently, less than 35% of patients who displayed t(4;
14) were identified as high risk, and those patients had
worse survival than patients with t(4;14) from the
intermediate-risk category. This is important to take into
account not only in the analysis of published prospective
trials but also in the design of future risk-adapted trials.

This PI was developed from a large series of patients with
sufficient follow-up to identify good prognostic factors
(using a Cox proportional hazards regression model strat-
ified by chemotherapy received during induction) predicted
by cytogenetic markers only. Age was not considered
during model development because none of the cytoge-
netic lesions studied were associated with age.28-30 We
show that the PI performance for discriminating patients
who died versus those who survived was 10 points higher
compared with conventional stratification factors, which
means that the PI alone was the better risk score for dif-
ferentiating risk categories in patients with MM. Its dis-
criminatory ability was also better than other combinations
of traditional risk scores, including R-ISS.

The strength of this study lies in the external validations
performed, especially using patients from validation data
set 2 who differed from those of the training set because
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they received up-to-date induction and consolidation
therapy and effective second-line therapies. Even though
probability of survival was higher in this cohort, the PI
retained good levels of prognostic and discriminative
abilities. These findings suggest that the PI contains the
main cytogenetic lesions and validate its transportability to
patients with MM in other settings.

A limitation of this study is the development of a score in
patients only included in clinical trials. This limits its ap-
plication in daily clinical practice. Nevertheless, the score
provides the advantage to require standardized methods
because the six anomalies were assessable by widely
available FISH and/or SNP array. Another limitation is the
noninclusion of cytogenetic aberrations that are potentially
important for the survival of patients, such as t(14;16),

which is now part of the definition of the R-ISS, although its
prognostic significance is not confirmed by all studies.2,8,31

Data were available for external validation data set 2, and
we observed that patients who displayed a t(14;16) had the
samemedian overall survival as those without it. In addition,
Walker et al26 showed that the number of copies of 1q21
gain seems to be important to consider for correctly
modeling its prognostic impact.

In conclusion, our data suggest that the cytogenetic PI
improves the classification of patients in high-risk groups
compared with classifications commonly used during the
past few years. These findings may provide better prog-
nostic stratification for patients with NDMM included in
clinical trials and accelerate the development of trials on the
basis of risk-adapted treatment strategies.
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FIG A1. Associations among the six cytogenetic anomalies in the four data sets. Tri, trisomy.
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FIG A6. Kaplan-Meier survival curves for myeloma specific survival according to the risk categories of the cytogenetic prognostic index for patients with ISS
disease stage I (A), stage II (B) and stage III (C) at diagnosis. External validation datasets were pooled for this analysis. Cox proportional regression models
were stratified on treatment groups. CI, confidence interval; HR, hazard ratio.
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TABLE A1. Multivariable Cox Proportional Hazard Regression Models of Myeloma Specific Survival Stratified by Treatment in the Training Set
Initial Prognostic Model Final Prognostic Model

Cytogenetic Abnormality b (95% CI) HR (95% CI) P b (95% CI) HR (95% CI) P

t(4;14) 0.42 (0.16 to 0.69) 1.53 (1.17 to 1.99) .002 0.40 (0.15 to 0.67) 1.50 (1.16 to 1.95) .002

Del(17p) 1.03 (0.78 to 1.28) 2.79 (2.218 to 3.59) , .001 1.17 (0.89 to 1.44) 3.21 (2.44 to 4.22) , .001

Trisomy 3 20.17 (20.41 to 0.08) 0.85 (0.67 to 1.08) .177

Trisomy 5 20.28 (20.54 to 20.01) 0.76 (0.58 to 0.99) .042 20.35 (20.59 to 20.11) 0.71 (0.56 to 0.90) .005

Trisomy 21 0.36 (0.11 to 0.62) 1.44 (1.11 to 1.85) .006 0.34 (0.09 to 0.59) 1.41 (1.09 to 1.81) .008

Chromosome 1q gain 0.49 (0.29 to 0.69) 1.63 (1.33 to 2.00) , .001 0.50 (0.30 to 0.70) 1.64 (1.34 to 2.01) , .001

Del(1p32) 0.79 (0.53 to 1.05) 2.20 (1.70 to 2.86) , .001 0.80 (0.54 to 1.05) 2.21 (1.71 to 2.87) , .001

Abbreviation: HR, hazard ratio.
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FIG A7. Comparison of empirical 5-year survival probability according to Kaplan-Meier method and 5-year survival probability predicted by Cox
proportional hazards (CPH) regression modeling.
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